Novel regulatory action of ribosomal inactivation on epithelial Nod2-linked proinflammatory signals in two convergent ATF3-associated pathways.
نویسندگان
چکیده
In response to excessive nucleotide-binding oligomerization domain-containing protein 2 (Nod2) stimulation caused by mucosal bacterial components, gut epithelia need to activate regulatory machinery to maintain epithelial homeostasis. Activating transcription factor 3 (ATF3) is a representative regulator in the negative feedback loop that modulates TLR-associated inflammatory responses. In the current study, the regulatory effects of ribosomal stress-induced ATF3 on Nod2-stimulated proinflammatory signals were assessed. Ribosomal inactivation caused persistent ATF3 expression that in turn suppressed proinflammatory chemokine production facilitated by Nod2. Decreased chemokine production was due to attenuation of Nod2-activated NF-κB and early growth response protein 1 (EGR-1) signals by ATF3. However, the underlying molecular mechanisms involve two convergent regulatory pathways. Although ATF3 induced by ribosomal inactivation regulated Nod2-induced EGR-1 expression epigenetically through the recruitment of histone deacetylase 1, NF-κB regulation was associated with posttranscriptional regulation by ATF3 rather than epigenetic modification. ATF3 induced by ribosomal inactivation led to the destabilization of p65 mRNA caused by nuclear entrapment of transcript-stabilizing human Ag R protein via direct interaction with ATF3. These findings demonstrate that ribosomal stress-induced ATF3 is a critical regulator in the convergent pathways between EGR-1 and NF-κB, which contributes to the suppression of Nod2-activated proinflammatory gene expression.
منابع مشابه
Chronic Nod2 stimulation potentiates activating transcription factor 3 and paradoxical superinduction of epithelial proinflammatory chemokines by mucoactive ribotoxic stressors via RNA-binding protein human antigen R.
Chronic exposure to gut bacteria and bacterial products including Nod2 ligands triggers homeostatic regulation in response to various mucosal insults. Activating transcription factor 3 (ATF3) is a negative regulator of proinflammatory cytokines via bacterial pattern recognition. On the assumption that ATF3 can be a critical modulator of epithelial inflammation, chronic stimulation of Nod2 was a...
متن کاملRibosomal Alteration-Derived Signals for Cytokine Induction in Mucosal and Systemic Inflammation: Noncanonical Pathways by Ribosomal Inactivation
Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines are exclusively ...
متن کاملMembrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor–κB activation in muramyl dipeptide recognition
Nucleotide oligomerization domain (NOD) 2 functions as a mammalian cytosolic pathogen recognition molecule, and mutant forms have been genetically linked to Crohn's disease (CD). NOD2 associates with the caspase activation and recruitment domain of RIP-like interacting caspase-like apoptosis regulatory protein kinase (RICK)/RIP2 and activates nuclear factor (NF)-kappaB in epithelial cells and m...
متن کاملATF3, an adaptive-response gene, enhances TGF{beta} signaling and cancer-initiating cell features in breast cancer cells.
The activating transcription factor 3 (ATF3) gene is induced by a variety of signals, including many of those encountered by cancer cells. We present evidence that ATF3 is induced by TGFβ in the MCF10CA1a breast cancer cells and plays an integral role for TGFβ to upregulate its target genes snail, slug and twist, and to enhance cell motility. Furthermore, ATF3 upregulates the expression of the ...
متن کاملEffects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 191 10 شماره
صفحات -
تاریخ انتشار 2013